Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.
Please help promote PhysicsOverflow ads elsewhere if you like it.
PO is now at the Physics Department of Bielefeld University!
New printer friendly PO pages!
Migration to Bielefeld University was successful!
Please vote for this year's PhysicsOverflow ads!
Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!
... see more
(propose a free ad)
Can someone explain the reason for light refraction in subatomic level?
What is "light fracture"?
sorry i meant light refraction :D @MitchellPorter
@VladimirKalitvianski thanks for your answer but now i have another question.
it may sound very silly as any other new question in science.
what would happen if we had 6 quarks in protons and neutrons instead of three?
what would happen then to light refraction ?
and is this situation even possible?
Proton is a rather compact particle - its "size" is much smaller than any photon wavelength, so normally a photon "sees" a point-like charge $+1$. The proton internals do not participate in photon scarttering separately; rather, they are tightly bound and do not change their initial state. There are heavy particles with more quarks: it is a deyteron, tritium, Helium_3, Helium_4, and the other heavier nuclea. They all act as point charges while photon scattering due to too tight coupling of quarks inside, so normally a photon does not "excite" a nucleus. There are exclusions (see Moessbauer effect), but for your purposes it is well sufficient to consider the nuclea and electrons as point-like charged particles affected with a photon electromagnetic field. It is atomic, molecular, and condensed meduim constituents who "refract" the photon because the binding energy in them is comparable with that of photon.
user contributions licensed under cc by-sa 3.0 with attribution required