# Intepreting Fermions as Differential Forms?

+ 2 like - 0 dislike
263 views

In this paper,

https://projecteuclid.org/euclid.cmp/1104248307

on path-integral quantization of Chern-Simons theory, on page 434 (equation 4.17), the authors used fermions to interpret wedge product and contractions of differential forms.

Let $M$ be a manifold, with local coordinate $x^{i}$. For any differential form $a\in\Omega(M)$, one has the operations

$$\psi^{i}:a\rightarrow dx^{i}\wedge a,$$

and

$$\chi_{j}: a\rightarrow a(\partial_{j}).$$

One has the Clifford algebra

$$\left\{\psi^{i},\chi_{j}\right\}=\delta^{i}_{j},\quad \left\{\psi^{i},\psi^{j}\right\}=\left\{\chi_{i},\chi_{j}\right\}=0$$

Define the Witten-index $(-1)^{F}$ as

$$(-1)^{F}:\omega\rightarrow(-1)^{q}w,\,\,\,\,\mathrm{for}\,\,\,\forall\omega\in\Omega^{q}(M).$$

Then one has the relation (equation 4.17)

$$\ast\psi^{i}\ast=(-1)^{F}\chi^{i},\quad\ast\chi^{i}\ast=\psi^{i}(-1)^{F}$$

where $\ast$ must be a Hodge star operator (I will assume that there is a Riemannian metric on $M$ so that $\ast^{2}=1$.)

Can anybody explain to me how to derive the relations (4.17)

I also posted my question here: https://physics.stackexchange.com/q/439992/185558

New Edition

I calculated this by myself but I cannot obtain the correct $(-1)^{F}$ factor.

Let $\omega\in\Omega^{q}(M)$ be a differential form on $M$. In local coordinates, one has

$$\omega=\frac{1}{q!}\omega_{i_{1}\cdots i_{q}}dx^{i_{1}}\wedge\cdots\wedge dx^{i_{q}}$$

Hodge star operator is defined as

$$\ast:\Omega^{q}(M)\rightarrow\Omega^{n-q}(M)$$

such that $\ast^{2}=1$.

One has

$$(\ast\omega)_{j_{1}\cdots j_{n-q}}=\frac{1}{q!}\epsilon^{i_{1}\cdots i_{q}}_{\qquad j_{1}\cdots j_{n-q}}\,\,\omega_{i_{1}\cdots i_{q}}$$

where the $\epsilon$ symbol is raised by the metric tensor. Therefore, one has

$$\ast\omega=\frac{1}{(n-q)!}\left(\frac{1}{q!}\epsilon^{i_{1}\cdots i_{q}}_{\qquad j_{1}\cdots j_{n-q}}\,\,\omega_{i_{1}\cdots i_{q}}\right)dx^{j_{1}}\wedge\cdots\wedge dx^{j_{n-q}}$$

Then, one has

$$\psi^{i}\ast\omega=dx^{i}\wedge\ast\omega$$

$$=\frac{1}{(n-q+1)!}\left(\frac{(n-q+1)!}{(n-q)!q!}\epsilon^{i_{1}\cdots i_{q}}_{\qquad j_{1}\cdots j_{n-q}}\,\,\omega_{i_{1}\cdots i_{q}}\right)dx^{i}\wedge dx^{j_{1}}\wedge\cdots\wedge dx^{j_{n-q}}$$

Applying the Hodge star operator again, one has

$$(\ast\psi^{i}\ast\omega)_{k_{1}\cdots k_{q-1}}=\frac{1}{(n-q+1)!}\epsilon^{ij_{1}\cdots j_{n-q}}_{\qquad\quad\,k_{1}\cdots k_{q-1}}(\psi^{i}\ast\omega)_{ij_{1}\cdots j_{n-q}}$$

Thus, one has
$$(\ast\psi^{i}\ast\omega)^{k_{1}\cdots k_{q-1}}=\frac{1}{(n-q)!q!}\epsilon^{ij_{1}\cdots j_{n-q}\,k_{1}\cdots k_{q-1}}\,\epsilon_{i_{1}\cdots i_{q}j_{1}\cdots j_{n-q}}\,\omega^{i_{1}\cdots i_{q}}$$

Rearranging indices of $\epsilon$ tensors, one has

$$\epsilon_{ij_{1}\cdots j_{n-q}\,k_{1}\cdots k_{q-1}}\epsilon^{i_{1}\cdots i_{q}j_{1}\cdots j_{n-q}}=(-1)^{(q-1)(n-q)}\epsilon_{ik_{1}\cdots k_{q-1}\,j_{1}\cdots j_{n-q}}\,\epsilon^{i_{1}\cdots i_{q}\,j_{1}\cdots j_{n-q}}$$

Using contraction rules of $\epsilon$ tensor, one has

$$\ast\psi^{i}\ast=(-1)^{(q-1)(n-q)}\chi^{i}$$

I expect to have $(-1)^{q}$. Where did I make mistakes?

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsOverflo$\varnothing$Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.