# Radiation energy losses in collisions of like charged particles

+ 0 like - 0 dislike
164 views

I am looking for articles devoted to calculations of radiation losses in collisions of similarly charged particles.

Please, tell me references to such works.

Perhaps to categorize in references. The question is broad. Are you talking of inelastic electrons scattering?

Ok. I mean  an elastic collision collision between two like-charged particles (electron-electron, proton-proton, alpha particle-proton). This can be both dipole and quadrupole (in the case of identical particles) radiation.

Ok. I mean  an elastic collision  between two like-charged particles (electron-electron, proton-proton, alpha particle-proton). This can be both dipole and quadrupole (in the case of identical particles) radiation.

It seems to me that radiation due to collisions is treated in Landau-Lifshitz textbook.

Yes. The general expressions for radiation losses  due to collisions is treated in Landau-Lifshitz textbook. But there are no numerical estimations for  any particular case (example) in this book. So, I need the original papers in this area.

Are you interested in radiation itself or in radiation losses impact on the projectile motion?

I am interested in radiation losses impact on the minimum distance that particles approach.

In LL there is an equation of a charge with rediation reaction term $\propto \dot{\text{F}}_{{\text{ext}}}$ which is useful in practical calculations. In the center of mass of two colliding particles this equation describes the relative motion of the projectile and the target particles - their Coulomb interaction is an "external force" for a particle with the reduced mass. Maybe this will help.

Do you need QFT exercises or some model suitable to specific calculations, ie for TEM images? The latter is classical while its presentation might be quantum dressed. For TEM images, I like Transmission Electron Microscopy by Williams and Carter which is declined in most curses citing it. Inside, you will find models and variants with "cross sections","events per unit distance", "differential CS", "mean free path", etc. I used to compare its methods with those of photons scattering in a crystal... It is yet broad, because one can imagine to study the same at the particles pair level but I'm not sure this might help in a lab ( Bragg, Feynman... ) . You might also want to focus on "losses", which is AMHO another desert in applied physics unless perhaps by using thermodynamics.

Oh, thanks. It will be useful for me

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.