I want to do the following path integral.
$$\mathcal{Z}=\int\mathcal{D}x e^{iS[\dot{x}]}$$
The action only denpends on $\dot{x}$. For some reason, I want to replace the integral measure $\mathcal{D}x$ by $\mathcal{D}\dot{x}$.
So I have
$$\mathcal{Z}=\int\mathcal{D}\dot{x}\mathrm{Det}\left(\frac{\delta x}{\delta\dot{x}}\right)e^{iS[\dot{x}]}.$$
The variable $x$ is related with $\dot{x}$ via the linear transformation
$$x(t)=\int_{0}^{t}\dot{x}(s)ds,$$
which implies
$$\mathrm{Det}\left(\frac{\delta x}{\delta\dot{x}}\right)\equiv 1.$$
Am I correct in the above derivation?