The image https://commons.wikimedia.org/wiki/File:Ball_of_yarn_10.jpg shows a ball of yarn. The spherical ball has radius \(R\) and volume $4 \pi R ^3 /3 $. The yarn itself has radius \(r\).
How long will the yarn be on average? The length $L$ is surely smaller than $V/(\pi r^2)$. But I have no idea how to estimate an actual average length. Is there a way to do this?