Let M be a manifold with two metrics (g,g′), the two Levi-Civita connections are (∇,∇′), the mixed curvature tensor is:
Rg,g′(X,Y)=∇X∇′Y+∇′X∇Y−∇Y∇′X−∇′Y∇X−
−∇[X,Y]−∇′[X,Y]
The mixed Ricci curvature tensor is Ricg,g′(X,Y)=tr(Z→Rg,g′(X,Z)Y). Then the coupled Einstein equations are:
Ricg,g′=μ(g+g′)
Ricg=λg
Ricg′=λ′g′