Let $(M,g)$ be a riemannian manifold with riemannian curvature $R$. Then the Riemann-Ricci curvature is:
$$RR(X,Y)=tr(R(X,e_i)R(Y,e_i))$$
A Riemann-Einstein metric is such that:
$$RR(X,Y)=\lambda g(X,Y)$$
with $\lambda$ a scalar.
Can we have spherical solutions of the Riemann-Einstein?