# The spinorial Dirac operator

+ 2 like - 0 dislike
146 views

Let $(M,g)$ be a spin manifold. We define the spinors and the spinorial Clifford algebra:

$$\psi . \psi' + \psi' . \psi = 2 < \bar \psi, \psi'>$$

with $\psi,\psi'$ two spinors and

$$(X.\psi).\psi' =\psi .(X. \psi')$$

with $X$ a vector.

$$\psi^{-1}= \frac {\bar \psi}{<\psi,\psi>}$$

We then can define the action of a spinor $\psi$ over a function $f$:

$$\psi (f)=df^* . \psi$$

and a spinorial connection:

$$\nabla_{\psi} (fs)= \psi (f).s + f \nabla_{\psi} (s)$$

with $s$ a section of a module over the spinorial Clifford algebra.

The spinorial Dirac operator is then:

$${\cal D}_{\psi}= \sum_{i \in I} \psi_i . \nabla_{\psi_i}$$

with $(\psi_i)_{i\in I}$ an hermitian basis of the space of spinors.

Has such a construction a physical meaning? asked Feb 3, 2020

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysicsO$\varnothing$erflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). To avoid this verification in future, please log in or register.