Let $(M,\omega)$ be a symplectic manifold. The symplectic Clifford algebra is:
$$ef-fe=\omega(e,f)$$
I define the symplectic Dirac operator over the symplectic spinors:
$${\cal D}=\sum_{i,j} \omega (e_i,e_j) e_i.\nabla_{e_j}$$
with $(e_i)$ an orthonormal basis. We have:
$${\cal D}(f\psi )= (df)^{\omega *} .\psi + f {\cal D}(\psi )$$
Have we:
$${\cal D}^2 =\Delta + \alpha$$
with $\alpha$ a scalar?