Let (E,[,],,φ) be a Lie fiber bundle (see my last message). A Lie connection is such that:
∇s(f.s′)=φ(s)(f).s′+f.∇s(s′)
with s,s′ sections and f a smooth function.
I define the Levi-Civita-Lie connection over E with metric g:
φ(s″).g(s,s′)=g(∇s″s,s′)+g(s,∇s″s′)
∇ss′−∇s′s=[s,s′]
Can we define the Ricci curvature and the Einstein equations?