Let (M,gq) be a q-riemannian manifold, q∈Diff(M), q.g(Xq,Yq)=g(q.Xq,q.Yq). We recall:
q.f(x)=f(qx)
q.X(f)=X(q.f)
We define the q-connection of Levi-Civita ∇:
∇XqYq−∇YqXq=[Xq,Yq]
Xq(g(Yq,Zq))=g(∇XqYq,q.Zq)+g(q.Yq,∇XqZq)
Does the q-connection of Levi-Civita exist and is unique?