Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Legal values of quantum field can take? $\mathbb{R}$, $\mathbb{C}$, $\mathbb{H}$, ..?

+ 5 like - 0 dislike
1724 views

Main issue: What are the legal and possible values of the quantum field can take?

Clarify by examples:

(1) For example, for the spin-0 Klein Gordon field $\phi$, we may choose it to be:

  • real $\mathbb{R}$.
  • complex $\mathbb{C}$.

(2) For the spin-1/2 fermion field $\psi$, we may choose it to be a spinor which needs to be

  • Grassman variable

but can also be

  • complex $\mathbb{C}$. (Dirac or Weyl spinor/fermion)
  • We can ask: Can it be in real $\mathbb{R}$? (Majorana or Majorana-Weyl spinor/fermion)

(3) For the spin-1/ boson field $A_\mu$, we may choose it to be a vector which needs to be

  • real $\mathbb{R}$ usually for photon field.

  • but can it be complex $\mathbb{C}$?

(3) How about the spin-3/2 fermion field $\psi_\mu$?

  • can it be in real $\mathbb{R}$, complex $\mathbb{C}$, quaternion $\mathbb{H}$, ..?
This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user annie marie heart
asked May 28, 2019 in Theoretical Physics by annie marie heart (1,205 points) [ no revision ]
In some theories the field takes values in a Lie group.

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user G. Smith
Not sure why this is put on hold. It's a pretty good question. It boils down to, at least, as far as I can think, studying the stability of a theory resulting from such generalizations. 'Stability' here could mean unitarity, absence of negative energy states, etc. One example I know of a similar generalization is when you make the worldsheet coordinates in string theory non-Archimedean, p-adic valued, giving you p-adic string theory (e.g. sciencedirect.com/science/article/pii/0550321388902076)

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user Avantgarde
@AccidentalFourierTransform I was thinking of the fields in nonlinear sigma models, not gauge fields. These models were not part of my QFT course, so I may completely misunderstand them. I thought the fields in these models have values in Lie groups such as $O(3)$. Is that not the case?

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user G. Smith
@AccidentalFourierTransform The Scholarpedia article “Nonlinear sigma model” (scholarpedia.org/article/Nonlinear_Sigma_model) says that the fields map spacetime into a Riemann target manifold $M$. It then goes on to say, “All the isometries of the target space $M$ form the group $G$ representing the global symmetry of $M$. The most important case is given by the target space that is a Lie group $G$ itself.” So this seems to confirm my statement. Do you agree?

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user G. Smith
I re-ask a different and focused one here: physics.stackexchange.com/q/482858

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user annie marie heart
@all, physics.stackexchange.com/q/482858/42982 physics.stackexchange.com/q/482860/42982

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user annie marie heart
An answer would depend on which model that we're talking about. And there are a lot of models to choose from...

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user Qmechanic
@G.Smith Ah, yes, you're absolutely right. I thought you were referring to gauge fields, thus my comment. But non-linear sigma models do take values in a generic homogeneous manifold, which may indeed be a Lie group. Although strictly speaking, the fields can be thought of as coordinates on the manifold, and so $\mathbb R$-valued. But anyway.

This post imported from StackExchange Physics at 2020-11-24 18:31 (UTC), posted by SE-user AccidentalFourierTransform

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...