Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,054 questions , 2,207 unanswered
5,345 answers , 22,720 comments
1,470 users with positive rep
818 active unimported users
More ...

  A classical scrutiny of the Schwarzschild solution

Originality
+ 0 - 0
Accuracy
+ 0 - 0
Score
0.00
803 views
Referee this paper: DOI 10.13140/RG.2.2.34735.87207 by Nitin Gadre

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)


requested Apr 3, 2021 by Dilaton (6240 points)
submission not yet summarized

paper authored Mar 31, 2021 to astro-ph by  (no author on PO assigned yet) 
  • [ no revision ]

    It is a well-known fact that the GR has a massive experimental support. The doubts raised in the article, https://www.researchgate.net/publication/350546500_A_classical_scrutiny_of_the_Schwarzschild_solution are regarding the geometrical aspects underlining the theory. The analysis goes as follows:

    (1) We first write a classical total energy equation (Kinetic energy + Potential energy) for a three- dimensional flat space, in a conservative field. For the classical potential (-M/r) created by a static source, we get the Newton’s force equations from the three-dimensional Lagrangian analysis.

    (2) We can then write the potential in kinetic energy form by introducing an additional coordinate and write a four-dimensional total energy equation. This will give same results as (1) above, in a four-dimensional Lagrangian analysis. We can also write a corresponding four-dimensional metric.

    (3) We can then multiply the four-dimensional total energy equation in (2) by a suitable function to write the curved space four-dimensional modified total energy equation. Appropriate choice of the function will give us desired results in a four-dimensional Lagrangian analysis which can match the experimental observations (such as Mercury orbits).

    The Lagrangian, Christoffel symbols and geodesic equations require the space to satisfy certain geometric properties such as symmetry of basis vector. A three-dimensional flat space satisfies these geometrical requirements. Hence, in the corresponding physical picture, the impact of such modification on the geometry of curved space needs to be examined.

    (4) We can write a curved space-time metric (such as Schwarzschild metric) corresponding to the four-dimensional modified total energy equation in (3). A geodesic analysis of this metric will give same results for planetary orbits as the Lagrangian analysis of (3).

    We can therefore establish a correspondence between the classical Lagrangian analysis and the geodesic equations analysis of GR, based on the mathematical similarities. It seems that, a very similar mathematical analysis has two different physical interpretations as per the classical Lagrangian and the GR approaches. In the Lagrangian analysis, we have to suitably modify the potential to get similar results for planetary orbits as the curved space geodesic analysis.

    (5) However, it is difficult to draw a geometrical picture of the four-dimensional curved space. As it is difficult to write the unit vectors, even a proper coordinate system for the curved space cannot be defined. Thus, it becomes difficult to write a force vector or any other vector.

    (6) To overcome this difficulty, it is suggested in standard GR that the space is generally curved but approximately flat in a local inertial frame. This arrangement can take care of the problem of defining vectors locally, but it is not sufficient to satisfy the necessary condition of symmetry of basis vectors.

    The objection to the GR approach can be now stated: In a classical approach, the mathematics essentially suggests a model which gives same results in a theoretical analysis as the reality in the experiments. The model will be closer to reality if we can draw a corresponding geometrical picture. In GR, the mathematics itself is supposed to describe the reality. But if we are not able to define a coordinate system corresponding to a metric, then it becomes a mathematical expression without proper geometrical support, even if the results match the experimental observations. In the same manner, we may write many such metric expressions (adopting method in point (3)) which may not have geometrical support, but give us desired results in a mathematical analysis, matching various experimental observations. A classical three-dimensional flat space Largrangian analysis with a modified potential function can also give desired results for planetary orbits. In electrodynamics, we know that arrangements of charges in a source and its velocity can modify the potential function. This classical approach cannot give a cause and effect relationship for time dilation due to our limited knowledge of physical nature of entities such as the field. Still, the classical approach will be geometrically correct.

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    p$\hbar$ys$\varnothing$csOverflow
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    Please complete the anti-spam verification




    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights
    ...