# Seiberg-Witten equations for spinorial connection

+ 0 like - 0 dislike
651 views

Let $(M,g)$ be a spin manifold with spinorial connection $\nabla$. The Seiberg-Witten equations for spinorial connection are:

$$\nabla_Y \psi = -i g(Y,X) \psi$$

$$dX^*_+= i < (YZ-ZY).\psi ,\psi >$$

With $\psi$ a spinor and $X$ a vector field, $Y,Z$ are variable vector fields.

The gauge group is $f: M \rightarrow S^1$, it acts on the solutions:

$$f.(X,\psi )= (X+i \frac{df^*}{f}, f \psi)$$

The moduli space is the quotient by the action of the gauge group.

Can we make Seiberg-Witten theory for spinorial connection?

edited Jun 1, 2022

I don't understand the question. There's already a spinorial connection in the equations you provide...

 Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead. To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL. Please consult the FAQ for as to how to format your post. This is the answer box; if you want to write a comment instead, please use the 'add comment' button. Live preview (may slow down editor)   Preview Your name to display (optional): Email me at this address if my answer is selected or commented on: Privacy: Your email address will only be used for sending these notifications. Anti-spam verification: If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:p$\hbar$ysic$\varnothing$OverflowThen drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds). Please complete the anti-spam verification