Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,103 questions , 2,249 unanswered
5,355 answers , 22,800 comments
1,470 users with positive rep
820 active unimported users
More ...

  Product of distributions

+ 0 like - 0 dislike
661 views

The distributions are generalized by limits of finite sums:

$$d(f)=\sum_{k=1}^n d_k(f^k)$$

where the $d_k$ are simple distributions. Then, we can define a product of distributions by the product of the Dirac functions (as they are dense in the distributions):

$$\{ \prod_{i=1}^n \delta_{t_i} \} (f)=f^n(\sum_{i=1}^n t_i)$$

What are the properties of such a product?

asked Sep 27, 2022 in Mathematics by Antoine Balan (-80 points) [ revision history ]

1 Answer

+ 0 like - 0 dislike

The product of distributions is associative, commutative, and distributive.
I explain that:
In your definition of the product of distributions, you have a summation over all possible products of Dirac delta functions.  So, for example, in the case of two distributions A and B, you would have:
A(f) * B(f) = sum over all products of Dirac delta functions of A and B
          = sum over all products of Dirac delta functions of B and A
          = B(f) * A(f)
So the product of distributions is commutative.
Similarly, for the case of three distributions A, B, and C, you would have:
A(f) * (B(f) * C(f)) = sum over all products of Dirac delta functions of A, B, and C
                   = sum over all products of Dirac delta functions of (A * B), and C
                   = (A * B)(f) * C(f)
                   = A(f) * (B(f) * C(f))
So the product of distributions is associative.
Finally, for the case of four distributions A, B, C, and D, you would have:
A(f) * (B(f) + C(f)) = sum over all products of Dirac delta functions of A and (B + C)
                   = sum over all products of Dirac delta functions of A, B, and C
                   = A(f) * B(f) + A(f) * C(f)
                   = (A * B)(f) + (A * C)(f)
                   = A(f) * (B(f) + C(f))
So the product of distributions is distributive.

answered Sep 29, 2022 by anonymous [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...