This question is a little bit trying to understand physics or chemistry through geometry of simplex:
Let Ei,j be the ionization energy in times the number of hydrogen ionization energy for an element with order number Z=i and j-th electron to be ionized.
Then |EZ,i−EZ,j| can be interpreted in physics as the hypothetical energy of light emitted or absorbed when an electron of an Z-atom moves from i to j state.
We can write |EZ,i−EZ,j| as:
|EZ,i−EZ,j|=|ψ(Z,i)−ψ(Z,j)|2
where ⟨ψ(Z,i),ψ(Z,j)⟩=min(EZ,i,EZ,j) is the dot product in some Hilbert space.
In this Hilbert space we have:
squared norm of vector =|ψ(Z,i)|2= ionization Energy of electron i
and also:
squared Distance = Energy
We can look, as in the book of Miroslav Fiedler, at the matrices:
MZ:=(|EZ,i−EZ,j|)1≤i,j≤Z
MZ,0:=(0eTeMZ)
QZ,0:=−2M−1Z,0=:(q00qT0q0QZ)
We define an undirected graph on the electrons:
qij<0→ acute angle between faces in simplex=(−1)=sij
qij=0→ right angle between faces in simplex=(0)=sij
qij>0→ obtuse angle between faces in simplex=(+1)=sij
One might then also compute the radius of the circumscribed hypersphere:
rZ=√q002=√−det(MZ)2det(MZ,0)
**Question:**
**Is there an interpretation of the qualitative value sij=−1,0,+1 between two electrons in an atom in terms of known physics or in chemistry?** I have read about spins of electrons but am unsure if this fits here or not.
Fiedler Graph of Helium:
[![Fiedler Graph of Helium][1]][1]
Fiedler Graph of Lithium:
[![Fiedler Graph of Lithium][2]][2]
Fiedler Graph of Beryllium:
[![fiedler_graph_of_beryllium][3]][3]
Fiedler Graph of Bor:
[![fiedler_graph_of_bor][4]][4]
Fiedler Graph of Carbon:
[![Fiedler Graph of Carbon][5]][5]
[Here are some pictures of the signed graphs.][6]
Thanks for your help!
[1]: 
[2]: 
[3]: 
[4]: 
[5]: 
[6]: https://sagecell.sagemath.org/?z=eJzNV21v2zYQ_h4g_0Fzvkg2TZOyHVtFPSD1shTbsjXtMAwThECWaZupRKmU3Cb_fkdSr7bbtEAHTIAt6fjcC-_I08ONTBMrfx-zUAq8ZlGaZGnOC54Ki8OjLKw3yyv0K5OCxfB0frbRChHPnnCUirwIRZFX0B2KkJXtnnIehfF9PYyst0_rFZPb87PzsySNrcUJkN-7-phuw7VMrUrWC3wSKJ3SvNgn2ZMV5pbIzs-uwYrv0zG-DND5mdW6fHeCL9F0gidHI1M8QbMpjFLXxdOjYQ-PEZ1jF9HpGHvIpTM8OwLNAeROATSeKczUA5vjCcFugPzLyxmaTl3kzfAUzdTfRP25nnI5OeFxMvfAyNhzMUWXE4MHoxA7ohSPj_BqvnROpmg8xdSlVE3TG0-1swkdTyF-gMw9D9HxHFPqzdBs7GHXQ_MZBQShQceiTu-abaytDBP7-sF5YYYlK_ZSWElYSP5o-37CBYz6PEDw_xA41iaVFre4sGQotsyOmRp3nEAPPJwYcCpPtwzk8gu-wlVufA2_ky_Scnb7AOumCcEIwbVaTWVqBDyXpoxAuQkbN2JAK2vq4hsrXCzIi26lZPpJmSTBwBZO32-nncU5O42mwcC_ffDDIUUrM7tVy63TsgER4zDLmFjboOucSiTcHMuq68uKu04eSJ0H0sy0tDB0-7ek37eH1Gnrt9TvlHpt08g4UrmliJZplEhEILgjWECMue3AtNovHZcwkO9XZehgCWn1tvt3fCvY-kaG2Q58ohxeF8O6EndlPE04NyAxaKep613lvqksb6e4VZeDxdUZK-t-50OkwUtihWJt6YAgIv3Cf1g8vLAurDDaFwwk25h1tXWEOFyv79karKsZ62wfeCCYvFyoDWFcOS8XIGm5I423Z-2TY_PG6o9ti4PuBNJVsc-_dgYD2l1HNxWuVcaqgP-fwv33tSo9SL7dFV_p4Lliff_61BX6QMgzO73esz5BJGipLrmM9knERNHp8KdsiIPW0PQQGCB1E4mgEeiuIp5pFwpYtwsZrvk-P_rSwMxMIOUUS5NKmH-QhQ1iZ2S7lZxW8uGaFXZjTWH6jUibgstoZZKLwpYwM9tBkqpbN2uSmmwvXTBff_QI-lbuYKnko28kEEaJGMJSkRfDY-B9_nkFYthQyYw0SfK-hCaGYhm2NT2mYm0k0WRNBX3E5bowMHqK73UhJAgQ1GC7ePvTz-3vx7LpBEvIPKRfL3y9yspP1bJejgK1ntufN3GwEJfPfbauum7LQLo2BktcQLPKgXoz2zHLI4tLShLph55k6x7qbSVjAu6reM_g9sTiOP0ED6nudfAQPYWiB1oiTFiuFV-D9LUa-o3D3yv19Ap-S_j9Dr8_FFq1TNG0TIo0_3EaoqOnXm1Ss8R7LGYJ7HQY6SFL-1NszUCulYLPRqpeuiEzZf0aACWJuTBGBGoaQqo2emubYZAkdg8OHKtetYf-UZA6ffByuNM7EX4g3ER3ojV1keor1OuI6nZVSj-m8ZtQhnHM4rRIs6o1VLwZq37Qwr6DM0vMHgF2oNino00YFankYVzP5KM-FDVqRhrphIAUdDKuOglwMjFyMXH62zBJQvUyoPCqBuA-quwpv7KshGB_qQYKheg_9vtuJX3_SwJi7xJP5lZfo8xIHCYrGIj6u5GtUX1KCBnBsc05rBzoIA1BSmlENWX0HBRJJCtwsQFjcHC0xb0-WwooQL4YV8N_32tAscEbXtzrTbBRVa_TGu3SmOXvn2xYDur4V-e4DEMZqCSRqnYEdY7hq5_hhIVCj6PwkecL4iA6YqL23GL8F5-jExcGWlFtZcznAxoMzVO12jUsU2silNA0xmvb1p3IQSUORWmcykUU-2Lo1lqxKnrMBevMQtuKMXsslEs_y2o8SMtAKjfaPOzLwDgigeOYrnaR7xM7ix2c79JPtlP2OSARwPBoiw_BUbvgYs8aVpWrNPhA1aHZBt1jTq7o7QGZKveP4U6atVkvqo2kLhYbxcPzUalnKNEX9D7jr6Q9JxRvTJM9dVrIW7AMNqN9U-WnkV8p8onDfZEmqcx2PE_utzLdZ21MNWcAySTVIEuDTLOJeV7YV86xAl9bKRwWW7bbaleYr-2DtpTrWajDebarZ6lDbzNppAjefRyu4GS5-FPuWTWtfwGVIH9T&lang=sage&interacts=eJyLjgUAARUAuQ==