Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,047 questions , 2,200 unanswered
5,345 answers , 22,709 comments
1,470 users with positive rep
816 active unimported users
More ...

  Derivatives of fluctuations about a condensate

+ 4 like - 0 dislike
533 views
  • Firstly I am not sure as to whether I am using the word "condensate" in the right context. In QFT contexts I think I see it getting used to mean the space-time independent solution which would solve the Euler-Lagrange equations of the action that would sit in the exponent in the path-integral - which in general might be different from the classical action. I would like to know why are these kinds of solutions so important - because this is picking out some special configurations among the entire space of classical solutions which would in general include non-trivially dynamical solutions.

  • Now when one is doing a "small" fluctuation about the condensate and integrating out degrees of freedom to get an effective action for one of the fluctuation variables then there are two issues which confuse me -

    • In multi component fields (like say complex ones which can be thought of as the modulus and the phase) what drives the choice as to which fluctuation is to be integrated out? (..in the complex case I guess in general people talk to the effective action for the phase fluctuation..)

    • What is most confusing to me is to understand how to determine whether the space-time derivatives of the fluctuations are big or small. If one is doing the calculation to say second order then does one keep the products and squares of the derivatives of the fluctuation at the same level of perturbation as the squares and products of the fluctuation themselves? I can't see a natural scale for the derivatives of the fluctuations to which I can compare the derivatives to decide whether they are large or small.

This post has been migrated from (A51.SE)
asked Dec 6, 2011 in Theoretical Physics by Anirbit (585 points) [ no revision ]
retagged Mar 7, 2014 by dimension10
I don't quite understand what you're asking here. Can you give a specific example?

This post has been migrated from (A51.SE)
@Squark May be you can consider how the effective field theory for the phase variable of a superfluid is derived starting from a lambda-phi-four theory with chemical potential - or in other words the theory of bosons interacting with a contact potential with a finite scattering length.

This post has been migrated from (A51.SE)

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysic$\varnothing$Overflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...