Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  What is the meaning of non-compactness in the context of $U(1)$ in gauge theories?

+ 7 like - 0 dislike
1409 views

In John Preskill's review of monopoles he states

Nowadays, we have another way of understanding why electric charge is quantized. Charge is quantized if the electromagnetic U(l)em gauge group is compact. But U(I)em is automatically compact in a unified gauge theory in which U(l)em is embedded in a nonabelian semisimple group. [Note that the standard Weinberg-Salam-Glashow (35) model is not "unified" according to this criterion.]

The implication of the third sentence is that, in some circumstances, the $U(1)_{em}$ gauge group may not be compact. How could this be? Since $U(1)$ as a differentiable manifold is diffeomorphic to $S^1$ isn't it automatically always compact?

The following paragraph:

In other words, in a unified gauge theory, the electric charge operator obeys nontrivial commutation relations with other operators in the theory. Just as the angular momentum algebra requires the eigenvalues of $J_z$ to be integer multiples of $\frac{\hbar}{2}$, the commutation relations satisfied by the electric charge operator require its eigenvalues to be integer multiples of a fundamental unit. This conclusion holds even if the symmetries generated by the charges that fail to commute with electric charge are spontaneously broken.

is OK, but I don't follow what that has to do with the compactness of $U(1)$.

This post imported from StackExchange Physics at 2014-03-22 17:13 (UCT), posted by SE-user twistor59
asked Feb 4, 2013 in Theoretical Physics by twistor59 (2,500 points) [ no revision ]
A suggestion for a new title (v1): E.g. What is (meant by) a non-compact $U(1)$ Lie group?

This post imported from StackExchange Physics at 2014-03-22 17:13 (UCT), posted by SE-user Qmechanic

1 Answer

+ 7 like - 0 dislike

By the "noncompact $U(1)$ group", we mean a group that is isomorphic to $({\mathbb R},+)$. In other words, the elements of $U(1)$ are formally $\exp(i\phi)$ but the identification $\phi\sim \phi+2\pi k$ isn't imposed. When it's not imposed, it also means that the dual variable ("momentum") to $\phi$, the charge, isn't quantized. One may allow fields with arbitrary continuous charges $Q$ that transform by the factor $\exp(iQ\phi)$.

It's still legitimate to call this a version of a $U(1)$ group because the Lie algebra of the group is still the same, ${\mathfrak u}(1)$.

In the second part of the question, where I am not 100% sure what you don't understand about the quote, you probably want to explain why compactness is related to quantization? It's because the charge $Q$ is what determines how the phase $\phi$ of a complex field is changing under gauge transformations. If we say that the gauge transformation multiplying fields by $\exp(iQ\phi)$ is equivalent for $\phi$ and $\phi+2\pi$, it's equivalent to saying that $Q$ is integer-valued because the identity $\exp(iQ\phi)=\exp(iQ(\phi+2\pi))$ holds iff $Q\in{\mathbb Z}$. It's the same logic as the quantization of momentum on compact spaces or angular momentum from wave functions that depend on the spherical coordinates.

He is explaining that the embedding of the $Q$ into a non-Abelian group pretty much implies that $Q$ is embedded into an $SU(2)$ group inside the non-Abelian group, and then the $Q$ is quantized for the same mathematical reason why $J_z$ is quantized. I would only repeat his explanation because it seems utterly complete and comprehensible to me.

Note that the quantization of $Q$ holds even if the $SU(2)$ is spontaneously broken to a $U(1)$. After all, we see such a thing in the electroweak theory. The group theory still works for the spontaneously broken $SU(2)$ group.

This post imported from StackExchange Physics at 2014-03-22 17:13 (UCT), posted by SE-user Luboš Motl
answered Feb 4, 2013 by Luboš Motl (10,278 points) [ no revision ]
Ah thanks! your first sentence explains everything. It was the whole idea of using an "unwrapped" $U(1)$ and still calling it $U(1)$ that I wasn't familiar with. When I read $U(1)$ I automatically think of a little circle. But yes, I see the Lie algebra is the same whether or not it's wrapped.

This post imported from StackExchange Physics at 2014-03-22 17:13 (UCT), posted by SE-user twistor59

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysi$\varnothing$sOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...