Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Can the laws of quantum mechanics be derived from a more fundamental theory?

+ 7 like - 0 dislike
4687 views

String theory takes quantum mechanics and tries to make it compatible with gravity. If it turns out to be a theory of everything then would it explain why our world is described by the laws of quantum mechanics?

I want to understand if the laws of quantum mechanics are the only logical possibility for a low-energy theory potentially derivable from a better understanding of string theory. The other possibility is that they are just strange laws that are discovered through experiments that can't be reached by pure theoretical reasoning.

Which of the two possibilities is more reasonable from a physics point of view and why?

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user bill
asked Apr 22, 2013 in Theoretical Physics by bill (60 points) [ no revision ]
Yes, quantum mechanics is the foundation of all of modern physics - condensed matter physics, nuclear physics, atomic physics, optics, molecular physics, particle physics, quantum gravity, string theory - and it is the only logically possible framework aside from classical physics (which is ruled out) that is worth mentioning. The fact that QM can't be any different has lots of aspects, see e.g. motls.blogspot.com/2013/04/… One may perhaps explain the connections of QM to other things but postulates of QM won't change again. Ever.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Luboš Motl
Well , the basic assumption is that quantum states are normalizable vectors living in a hilbert space . quantum follows from the linearity and the methods of calculating probabilities .What I really ask is that if it's possible to map quantum mechanics to another theory mathematically so quantum mechanics could actually have richer structure than we know .So,Quantum mechanics could be absolutely correct but there may be a missing part of the story

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user bill

Related: What are the reasons to expect that gravity should be quantized? and links therein.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Qmechanic

I do not understand your question.Quantum Mechanics is a theory that uses least number of assumptions.By Occam's razor it should be the most consistent among other theories.If one can discover a theory with less number of assumptions than QM and prove all the things QM has proven then probably that particular theory will be acceptable.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user WInterfell
I am not sure if you are looking for something along the lines of contextuality? In quantum information theory, quantum states are simply states with a higher degree of correlation than possible within classical theories. There is, however, the possibility of theories where there are even stronger correlations. These would include quantum mechanics, but be distinct from it. I think (I am not sure though), there are certain experimentally verifiable bounds and correlations, but so far no experiment has, to my knowledge, broken them.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user S. Gammelmark
This doesn't seem to be a question with a concrete answer, but rather a request for discussion. In that sense it is a good questions, but a poor fit for the Q&A format.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user dmckee
@dmckee I have edited the formulation of this question to make it more to the point. I think asking if the laws of quantum mechanics can be derived from a more fundamental theory is a legitimate fundamental physics question. It can be answered in accordance with the actual point of view hold by theoretical physicists, as Lubos Motls has shown in his comment or in more detail in his blog article he linkes too. So can the question now be reopend? (I think people who do not properly understand the questions discussing too much nonsense in the comments does not invalidate the question itself)

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Dilaton

The question asks if there is a more fundamental theory behind quantum mechanics(QM). This is a huge subject starting with e.g. hidden variable theories, Bohm's pilot wave theory, 't Hooft's deterministic models, etc.; and continuing with the latest ideas of quantum gravity. Perhaps it would be more constructive if OP would ask about a concrete proposal that extends QM? Related: The reference frame, this and this posts.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Qmechanic

@Qmechanic as I understood the first version of the question, the OP is mainly interested in the question if the laws of quantum mechanics can be explained from (a deeper understanding of) string theory. Maybe the title should be edited again to reflect this? It would be best if the OP clarifies the issue further but I could edit the title once again too ...

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Dilaton
Conventional string theory assumes quantum mechanical axioms from the very beginning.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Qmechanic
@Qmechanic yes I know ... :-). So saying that it is rather the other way round together with Lumo's comment and article about why QM can not be different would make a good correct answer I think.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Dilaton
I think this question should get reopend to obtain a nice and clear answer which clears all misconceptions up once and for all.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Dilaton
Just like any physical theory, quantum theory can be wrong, and will almost certainly be proven to be wrong by future experiments. In fact, the combination of quantum theory and general relativity suggests that any theory formulated in terms of real numbers are wrong, which include quantum theory and general relativity. This is because if quantum theory and general relativity are correct, then real number cannot exist, since real number can never be measured. So quantum theory and general relativity are not self consistent. One of them must be wrong. Most likely, both of them are wrong.

This post imported from StackExchange Physics at 2014-04-05 04:41 (UCT), posted by SE-user Xiao-Gang Wen

1 Answer

+ 0 like - 2 dislike

It was Einstein's dream that nature would arise from his unified field theory, and that QM would describe it at the statistical level. 't Hooft arrived at a similar view. From the analysis of models for ideal quantum measurement, it has become clear the QM indeed leaves open the possibility that it derives from a hidden variables theory. Forget Bell inequalities, they cannot escape the contextuality loophole, and thus cannot have any say on physics. Also forget string theory for this, that is a form of QM.

answered May 12, 2014 by theon [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOver$\varnothing$low
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...