Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Variations of S-matrix functional and Feynman diagrams in Weinberg QFT

+ 5 like - 0 dislike
1648 views

Weinberg on p. 287 of his QFT vol. 1 introduces the extended interaction operator:

\(\tag 1 \hat{V}(t) \to \hat{V}(t) + \sum_{a}\int d^{3}\mathbf x \hat{o}_{a}(\mathbf x ,t)\varepsilon_{a}(x).\)
Here

\(\hat{S} = \hat{T}e^{i\int \hat{V}(t)dt}, \quad \hat{o}_{a}(\mathbf x, t) = e^{i\hat{H}_{0}t}\hat{o}_{a}(\mathbf x , 0)e^{-i\hat{H}_{0}t}.\)

Then he says that S-matrix arbitrary element $S_{\beta \alpha} = \langle \beta | \hat{S}| \alpha \rangle$ after extension $(1)$ becomes the $\varepsilon $-functional, and after that he introduces generalized Feynman rules by adding new vertexes corresponding to $\hat{o}_{a}$ with $n_{a}$ lines (the number $n_{a}$ coincides with the number of fields in $\hat{o}_{a}$) and c-factor $\varepsilon_{a}$.

After that he introduces variational derivative

\( \tag 2 \left( \frac{\delta^{r}S_{\beta \alpha}}{\delta \varepsilon_{a_{1}}(x_{1})...\delta \varepsilon_{a_{r}}(x_{r})}\right)_{\varepsilon = 0} = (i)^{r}\langle \beta | \hat{T}\left(e^{i\int \hat{V}(t)dt} \hat{o}_{a_{1}}(x_{1})...\hat{o}_{a_{r}}(x_{r})\right)|\alpha\rangle\)

and notices that all $n_{a_{1}}, ..., n_{a_{r}}$ lines correspond to $\hat{o}_{a_{1}},...,\hat{o}_{a_{r}}$ respectively are internal, i.e. in case when $n_{a_{1}} = ... = n_{a_{r}} = 1$ they are compared to the propagators.

Finally, he says, that if we want to get Feynman diagram with $r$ external lines with types $a_{1},...,a_{r}$ in momentum representation we need to do following with $(2)$:

1) to throw out of propagators $D_{a_{1}a_{r}}(x_{1} - x_{r})$,

2) to apply the Fourier transformation,

3) to add corresponding coefficient functions $u_{a_{1}},...$.

Here is the question: сould you make the sense of introduction of mechanism 1)-3) clearer for me? Why do we need additional $r$ external lines which with corresponding vertexes which aren't connected to other vertexes (so the diagram is non-connected), as I think?


This post imported from StackExchange Physics at 2014-08-13 08:20 (UCT), posted by SE-user Andrew McAddams

asked Aug 12, 2014 in Theoretical Physics by Andrew McAddams (340 points) [ revision history ]
edited Aug 13, 2014 by Dilaton

@dimension10 @Dilaton, the equation (2) looks truncated to me, is it just my browser's problem or do you see the same thing?

@JiaYiyang yes, I see it too.

I have now improved it. If this happens too often when importing question such that it becomes annoying, we can Polarkernel tell about it ...

@Dilaton, thanks. I vaguely remember seeing it before in another post with a long formula, I thought it could be my own problem and didn't bother to report it.

(1) looks like adding separated variables (commuting with the other fields) to the total Hamiltonian.

1 Answer

+ 4 like - 0 dislike

1) is a misunderstood statement, Weinberg did not mean that,and connectedness of the diagrams is simply not a relevant issue.Hopefully it will be clarified by what I am inputting below.

The result is clear if you think in terms of Feynman diagrams, let's set $|\alpha\rangle$ and $|\beta\rangle$ to be vacuum states since they are of no essential relevance here. Now, think about what the difference is between the Feynman diagrams of, say,\(\langle 0 | \hat{T}\left(e^{i\int \hat{V}(t)dt} \hat{o}_{a_{1}}(x_{1})\hat{o}_{a_{2}}(x_{2})\right)|0\rangle\)and  \(\langle p_1,a_1 | \hat{T}e^{i\int \hat{V}(t)dt} |p_2,a_2\rangle\)? They are visually the same! Both are diagrams with two external lines from field types $a_1$ and $a_2$. The only difference is what we assign to these lines: for the former each external line contributes a propagator, which are something like \(D_{a_1 a_m}(x_1-x_m)\) and \(D_{a_2 a_n}(x_2-x_n)\), where $a_m,x_m$ and $a_n,x_n$ represent internal vertices that $a_1,x_1$ and $a_2,x_2$ connect to respectively; while for the latter each contributes a coefficient function, which are $u^*_{a_1}(p_1)$ and $u_{a_2}(p_2)$. 

Now it's obvious about how to get the latter from the former: all we need to do is to strip \(D_{a_1 a_m}(x_1-x_m)\) and \(D_{a_2 a_n}(x_2-x_n)\) away, go to momentum space, and replace them with the coefficient functions $u^*_{a_1}(p_1)$ and $u_{a_2}(p_2)$! That's all what Weinberg meant. You can easily generalize it to $n$ external line cases, e.g. from \(\langle 0 | \hat{T}\left(e^{i\int \hat{V}(t)dt} \hat{o}_{a_{1}}(x_{1})\hat{o}_{a_{2}}(x_{2}){o}_{a_{3}}(x_{3})\right)|0\rangle\) you can get \(\langle p_1,a_1 | \hat{T}e^{i\int \hat{V}(t)dt} |p_2,a_2;p_3,a_3\rangle\) or \(\langle p_1,a_1;p_3,a_3 | \hat{T}e^{i\int \hat{V}(t)dt} |p_2,a_2\rangle\) and etc., depending on how you do the replacement with the coefficient functions.

PS. The above discussion is only valid when $\hat{o}(x)$ represent a single-field operator, i.e. the argument fails if  $\hat{o}(x)$ is a product of more than 1 field operators. This is exactly what Weinberg assumed in the corresponding page.

answered Aug 13, 2014 by Jia Yiyang (2,640 points) [ revision history ]
edited Aug 13, 2014 by Jia Yiyang

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...