Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Pauli Master Equation usable for Bose-Einstein condensation?

+ 4 like - 0 dislike
932 views

As I am not an expert in the field, please correct me accordingly. Now to my problem: I wondered whether it is justified to use the Pauli Master Equation (i.e. linear coupling to markovian environment, sekular and born approximation) in the context of a phase transition such as in the case of Bose-Einstein condensation. The main meta question behind this are, of course, how to propagate the non-equilibrium time evolution of the transition into the model, and to which extent does the spectral density of the bath play a role.

Thanks in advance!

asked Apr 30, 2015 in Theoretical Physics by vsilv (60 points) [ no revision ]
recategorized Apr 30, 2015 by Dilaton

1 Answer

+ 2 like - 0 dislike

I am no expert myslef, but I believe that Master equation analyses of Bose-Einstein condensation have indeed been employed in the past. E.g. in the works of Gardiner, Zoller and co-workes (for example, "Quantum kinetic theory III", PRA 58, 536 (1998) ), and of Scully, Zubairy and co-workers (for example,  "Condensation of N bosons II", PRA 61, 023609 (2000) ). The above two papers include derivations of the master equations they study.

A nice recent application of this approach was to study what happens to condensation in a non-equilibrium steady state (answer: several condensates may form!), see Vorberg et. al, PRL 111, 240405 (2013).

answered Sep 28, 2015 by orihir (20 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$y$\varnothing$icsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...