Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,106 questions , 2,251 unanswered
5,379 answers , 22,892 comments
1,470 users with positive rep
822 active unimported users
More ...

  Dirac Matrix property suitable to finding sets of intersecting branes

+ 2 like - 0 dislike
583 views

So, 11 dimensional supergravity has four oft-studied half-BPS states, the KK1 plane wave, the M2 brane, the M5 brane and the KK6 monopole. To figure out if we can find more solutions in the form of intersecting branes, it is useful to figure out the conditions under which

$$[\Gamma_{0,a_1, \ldots, a_M}, \Gamma_{0,b_1, \ldots, b_N}] = 0$$

or

$$\{\Gamma_{0,a_1, \ldots, a_M}, \Gamma_{0,b_2, \ldots, b_N}\}= 0$$

where $a_i, b_i \in \{1, 10\}$ are the usual spatial indices of 11 D supergravity. The former leads to intersecting branes if some $a_i = b_j$'s and the latter leads to rotated branes (or branes within branes) if some $a_i = b_j$'s.

This property is important because the half-BPS conditions of the form

$$\Gamma_{0,a_1, \ldots, a_M}\epsilon = \pm \epsilon$$

have a self-consistency requirement $(\Gamma_{0,a_1, \ldots, a_M})^2 = 1$ (which must be enforced whether you use the commutator or the anticommutator).

It should be possible to find all possible (M, N) tuples $(a_1, \ldots a_M)$ and $(b_1, \ldots b_N)$ satisfying either one of the two conditions above, using some techniques of the representation theory of Clifford algebras or simply some properties of Dirac matrices. I know a few examples:

(1) (0,1,2) and (0,3,4) commute (2) (0,1,2) and (0,1,3,4,5,6) commute (3) (0,1,2) and (0,1,3) anticommute (4) (0,1,2) and (0,1,2,3,4,5) anticommute

where the first ordered M-tuple defines the indices of $\Gamma$ from left to right, and the second N-tuple defines the indices of the other $\Gamma$. So, in this notation (1) means $[\Gamma_{012},\Gamma_{034}] = 0$.

Is there a general solution to this problem? Just writing down the gamma matrices and using the Clifford algebra to figure out which commutators/anticommutators are zero is obviously one way to do it, but I am wondering if there's a better way.


This post imported from StackExchange Physics at 2015-05-22 20:54 (UTC), posted by SE-user leastaction

asked May 21, 2015 in Theoretical Physics by leastaction (425 points) [ revision history ]
edited May 22, 2015 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...