Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

206 submissions , 164 unreviewed
5,106 questions , 2,251 unanswered
5,400 answers , 23,019 comments
1,470 users with positive rep
822 active unimported users
More ...

  Help needed understanding Kerr coordinates

+ 1 like - 0 dislike
397 views

The (uncharged) Kerr metric for a black hole of mass $M$ and angular momentum $Ma$ takes the form

$$ds^{2} = \Sigma\Big(\frac{dr^{2}}{\Delta} + d\theta^{2}\Big) + (r^{2} + a^{2})\text{sin}^{2}\theta d\phi^{2} + \frac{2Mr}{\Sigma}\Big(a\text{sin}^{2}\theta d\phi - dt\Big)^{2} - dt^{2}$$

where 

$$ \Delta = r^{2} - 2Mr + a^{2} \text{ and } \Sigma = r^{2} = a^{2}cos^{2}\theta .$$ 

In my notes we introduce the coordinates $\chi$ and $r_{*}$ such that 

$$dr_{*} = \frac{r^{2} + a^{2}}{\Delta} dr \text{ and } d\chi = d\phi + \frac{a}{\Delta}dr$$

I was just wondering if I could get some help understanding these coordinates. Intuitively I imagine the submanifold of constant $\chi$ to be some sort of spacelike surface that spirals inwards and contains all null geodesics starting at some initial fixed $\phi$. I assume then that the transformation to $r_{*}$ stretches this "sheet" so that the null geodesics that reside in it are "straight." Is this intuition correct? If so, do timelike geodesics starting at the same $\phi$ stay at a fixed $\chi$ during the entire trajectory?

(This is a cross post from Physics Stack Exchange)

asked Apr 6, 2016 in Theoretical Physics by coarsegrained (60 points) [ revision history ]
recategorized Apr 6, 2016 by Dilaton

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOve$\varnothing$flow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...