Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  The scale transformation

+ 2 like - 0 dislike
1298 views

In this text, there are scale transformations which are given by Eq. (12.112)

$$
x' = e^{-\rho}x, \quad \varphi{'}(x') = e^{d\rho}\varphi (x) \qquad (1)
$$

Authors then calculate the dilatation current by using these transformations.

In this text, however, the transformations are different (Eq. (7.163)): up to different designations,

$$
x' = e^{-\rho}x, \quad \varphi{'}(x') = e^{d\rho}\varphi (e^{-\rho}x) \qquad (2)
$$

$(1)$ and $(2)$ have different variations $\delta \varphi$, and hence different expressions for dilatation currents. Which is correct?

asked Sep 16, 2016 in Theoretical Physics by NAME_XXX (1,060 points) [ revision history ]
recategorized Sep 16, 2016 by Dilaton

the first, as the second effectively doesn't transform the argument of $\phi$. 

@ArnoldNeumaier : could You please explain Your comment a little bit more?

In simpler notation, (2) is asserting $\phi'(z)=e^{d\rho}\phi(z)$, which is not correct.

To me it seems that in the second part of (1) only the field $\varphi$ undergoes a scaling transformation, whereas in (2) the field and spacetime get rescaled at the same time.

This would then mean that in some notation, the scaling current for (2) consists of a spacetime and an internal part, see eq (22) of this paper

\[\Theta^{\mu} = x_{\nu}\Theta^{\mu\nu} + \Sigma^{\mu}\]

whereas for (1) only the internal part $\Sigma^{\mu}$ is present. $\Theta^{\mu\nu}$ is the canonical energy-momentum tensor.

''To me it seems that in the second part of (1) only the field φ undergoes a scaling transformation, whereas in (2) the field and spacetime get rescaled at the same time.''

yes, and this means that (2) is faulty, since if space-time is not transformed, the field shouldn't change either. It would make the scale transformation an internal symmetry, which is meaningless.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ys$\varnothing$csOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...