Let $(M,g,J)$ be a Kaehler manifold ($\nabla J=J \nabla$), let $R(X,Y)$ be the riemannian curvature. I define:
$Ricc(J)=\sum_i R(J e_i, e_i)$
for an orthonormal basis $(e_i)$
$R(J) = J Ricc (J)$
$r(J)=tr (R(J))$
then I can define the Einstein-Kaehler equations:
$R(J)_{ij} - (1/2) r(J) g_{ij} =T_{ij}$
Can I reformulate the gravitation by means of these equations?