Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,354 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  What are some Physical interpretation of (some generalized) Nash embedding theorem

+ 3 like - 0 dislike
1370 views

What are some  physical interpretation of  the  Nash isometric  embedding theorem?

What  would be  a  physical interpretation of the following stronger version of the  Nash theorem?(Is this  stronger version, true?)

https://mathoverflow.net/questions/311266/nash-isometric-embedding-theorem-with-keeping-the-symplectic-structures-of-our-a

asked Sep 28, 2018 in Mathematics by AliTaghaviMath (145 points) [ revision history ]
recategorized Sep 28, 2018 by Dilaton

1 Answer

+ 3 like - 0 dislike

I answered a similar question on Quora recently, as can be read here, and the solution to the problem which is there stated (also asked on the mathematical cousin of this site), namely: if it's possible to employ one of the embedding theorems to embed a symplectic structure \((\mathcal M, \Omega)\). The answer is positive: assuming class \( C^{\omega} \), simply use the original Whitney formulation to find an embedding \(i:\mathcal M \longrightarrow \mathbb{R}^n\) and let \(\hat{\Omega} \in \bigwedge^2 \mathbb{R}^n \) be such that its pull-back obeys \(i^{*}(\hat{\Omega})=\Omega \). Since by assumption our structures are \(C^{\omega}\) , analytical continuation of the components of \( \hat{\Omega} | _{i(\mathcal{M})}\) completely fixes the 2-form \(\hat{\Omega}\) on the entire ambient space \( \mathbb{R}^n\).

Observe that in the above argument, no particular use is made of a metric, so we can use Whitney theorem that only requires that the manifold be differentiable, and moreover, \( n = 2 \mathrm{dim} (\mathcal{M})\) . The state of affairs becomes more complicated as you give more structure to the manifold which you wish to find an embedding. For instance, the famous theorem of Nash comes into play when your manifold \(\mathcal{M}\) is given a Riemannian metric, and you want to embed it into an Euclidean space.

When one thinks about embedding theorems in theoretical physics, GR provides the natural setting, since the manifolds of interest are non-compact pseudo-Riemannian spaces (carrying Lorentzian metrics), and one requires a generalization of Nash theorem. This work was performed by a relativity expert, C. S. Clarke, and can be found on his paper "On the Global Isometric Embedding of Pseudo-Riemannian Manifolds."

An instance where an embedding was used in GR was one of the paths that eventually lead to the analytical maximal extension of the Schwarzschild metric, the Kruskal-Szekeres spacetime. The first attempt to embed the Schwarzschild metric started already with Kasner in 1921, where he found an embedding in the 6-d pseudo-Euclidean space \(\mathbb{R}^{2,4}\), but his embedding suffered from a topological defect (he used trigonometric functions to parametrize the temporal coordinate, identifying the time-axis with \(S ^1\), creating a naive "time-machine" spacetime!). His mistake was later corrected by Fronsdal only in 1959 (Fronsdal replaced the trigonometric mappings by hyperbolic ones), and embedded Schwarzschild in the 6-d Minkowskian spacetime \(\mathcal{S}\subset\mathbb{R}^{1,5}\). With the embedding at hand, Fronsdal easily showed the geodesic completeness of the hypersurface \( \mathcal{S} \), finally proving that the "singularity" at the Horizon \(r=2M\) was a coordinate defect of Schwarzschild's coordinates,  completing the construction of the simplest black hole spacetime in GR. (For a discussion of these matters, see my review 1403.2371, sec. 4.2).

The method above delineated to find the maximal analytical continuation of the Schwarzschild spacetime is not the simplest one to accomplish such a task. In fact, textbook derivations relies in the use of a (singular) coordinate transformation to arrive at some chart covering the entire manifold of the Schwarzschild spacetime, e.g., Eddington-Finkelstein, Painlevé-Gullstrand, Kruskal etc. However, I think that at least in principle, the method outlined here, using Clarke's embedding theorem, could be used to systematically produce analytic continuations for those Lorentzian metrics whose components are degenerate in some regions, but whose curvature invariant are nevertheless well-behaved. For instance, I would be curious to know if one can study the ergosphere living inside the outer horizon of the Kerr spacetime using an embedding like this.

answered Oct 10, 2018 by Igor Mol (550 points) [ revision history ]
edited Oct 10, 2018 by Igor Mol

@IgorMol  Thank you  very  much  for  your  answer.

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysics$\varnothing$verflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...