Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Quantum nonintegrability in finite systems

Originality
+ 2 - 0
Accuracy
+ 3 - 0
Score
6.27
1515 views
Referee this paper: https://doi.org/10.1016/0370-1573(94)00081-D by Wei-Min Zhang, Da Hsuan Feng

Please use comments to point to previous work in this direction, and reviews to referee the accuracy of the paper. Feel free to edit this submission to summarise the paper (just click on edit, your summary will then appear under the horizontal line)

(Is this your paper?)


Quantum nonintegrability in finite systems, as viewed from geometry and dynamical symmetry breaking, is discussed in this article. The concept of quantum nonintegrability can be constructed from the mathematical structures of quantum mechanics. It is shown that there is a natural geometrical description for a quantum system, which provides a suitable stage to investigate the time-honored question of quantum-classical correspondence as well as the underlying problem of nonintegrability in quantum mechanics. The implication of dynamical symmetry breaking to quantum nonintegrability and chaos is explored.

requested Feb 3, 2019 by Dilaton (6240 points)
summarized by Dilaton
paper authored Feb 3, 2000 to math-ph by  (no author on PO assigned yet) 
  • [ revision history ]
    edited Feb 3, 2019 by Dilaton

    1 Review

    + 2 like - 0 dislike

    These remarks are rather an extended summery supplemented by some additional thoughts of an educated reader than the judgement of a senior researcher in the field who has kept track of all the existing literature concerning the topics of this paper..

    In Quantum nonintegrability in finite systems, Zhang and Feng (1995)
    define and investigate the integrability of finite quantum systems
    in analogy to the definition of integrability in classical mechanics.
    For that purpose they construct the quantum phase space (based on
    generalized coherent states) of the quantum system at hand and
    derive classical-like equations of motion on it called semiquantal dynamics.


    The quantum dynamical degrees of freedom are identified to be the quantum numbers needed
    to describe the system. The quantum dynamical phase space is then defined
    as the coset space $G/H$, where $G$ is the covering group of g (a Lie algebra of self-adjoint operators) and $H$ is the
    maximal stability group with respect to a fixed state
    $|\psi_0\rangle$. The quantum phase space has as symplectic structure
    with the metric given by
    \[
    d^2s = \sum\limits_{ij}dz^idz^j* = \sum\limits_{ij}
    \frac{\partial^2K(z,z^*)}{\partial z^i\partial z^{j*}}dz^idz^{j*}
    \]
    where $K$ is the coherent product
    \[
    K(z,z^*)=\sum\limits_n c_n(z)c_n^*(z)
    \]
    If $g$ is a semisimple Lie algebra,
    \[
    K(z,z^*)= \det(I \pm Z^*Z)^{\pm\Xi}
    \]
    where the integer $\Xi$ is a so-called quenching index.
    The symplectic form $\omega$ is given by
    \[
    \omega=i\hbar\sum\limits_{ij}g_{ij}dz^i\wedge dz^{j*}
    \]
    and the Poisson bracket is
    \[
    \left\{ f,g \right\} = \frac{1}{i\hbar}\sum\limits_{ij}g^{ij}
    \left(\frac{\partial f}{\partial z^i}\frac{\partial g}{\partial z^{j*}}-
    \frac{\partial g}{\partial z^i}\frac{\partial f}{\partial z^{j*}}\right)
    \]
    Wave functions and operators of the quantum system can be expressed
    on the quantum phase space by means of the (generalized) coherent states
    \[
    |\psi\rangle = \int\limits_{G/H}\|z\rangle f(z^*)du(z)
    \]
    and
    \[
    A=\int\|z\rangle\langle z\|A\|z\rangle\langle z'\|du(z)du(z')
    \]
    Using the stationary phase approximation for the effective quantum action,
    Hamilton-like equations can be obtained on the quantum phase space $G/H$.
    The classical limit of the quantum system, if it exists, can be studied
    by letting $\Xi \to \infty$
    It is then shown, that a quantum system described by a dynamical group $G$
    is integrable if it possesses a dynamical symmetry of $G$.
    For a nonintegrable system, if the dynamical symmetry breaking is accompanied
    by a structural phase transition, chaotic motion occurs.
    For a nonintegrable non-compact quantum system, quantum fluctuation enhance the chaotic behavior whereas for compact nonintegrable quantum systems chaotic behavior is suppressed by quantum fluctuations.

    The explicit construction of a quantum phase space by means of generalized coherent states presented in this paper seems highly interesting and mathematically sound and the further investigations make a lot of sense. Studying the classical limit by letting the quenching index go to infinity seems less problematic than letting $\hbar \to 0$. The criterium of dynamical symmetry breaking plus structural phase transition for the occurance of quantum chaos, illustrated by numerical simulations for some representative examples, is rather cute.
     

    In addition to extending the investigations presented in this paper to the quantum field theory context, it would also be interesting to commpare the methods presented here to the new framework of coherent spaces as presented by Arnold Neumaier for example in his Introduction to coherent spaces and Introduction to coherent quantization.

    reviewed Feb 3, 2019 by Dilaton (6,240 points) [ revision history ]
    edited Feb 4, 2019 by Dilaton

    Your Review:

    Please use reviews only to (at least partly) review submissions. To comment, discuss, or ask for clarification, leave a comment instead.
    To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
    Please consult the FAQ for as to how to format your post.
    This is the review box; if you want to write a comment instead, please use the 'add comment' button.
    Live preview (may slow down editor)   Preview
    Your name to display (optional):
    Privacy: Your email address will only be used for sending these notifications.
    Anti-spam verification:
    If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
    p$\hbar$ysicsOv$\varnothing$rflow
    Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
    Please complete the anti-spam verification




    user contributions licensed under cc by-sa 3.0 with attribution required

    Your rights
    ...