Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Representing flux tubes as a pair of level surfaces in R^3

+ 1 like - 0 dislike
764 views

I am trying to see if Vector fields(I am thinking of electric and magnetic fields) without sources(divergence less) can be represented by a pair of functions f and g such that the level surfaces of the functions represent flux lines. I am trying to solve this problem in R^3 with a euclidean metric. It seems there is a linear space generated by af+bg preserving the flux lines, so these functions are not uniquely defined.

I have some queries related to questions of this type.

  1. Can it be done locally ?( it seems this is the case)
  2. Can I also represent the magnitude of the vector fields(probably as a dual vector associated with df^dg and euclidean metric)
  3. Are there any topological obstructions when you try to solve the local problem and extend to all of R^3
  4. Can it also be done if we include sources (remove the divergence free condition)
  5. Is there a general theory dealing with questions of this type? In specific if I have a manifold M of dimension d with a metric g and p-form fluxes, can I find d-p functions that can be used to represent these fluxes.
  6. Does this problem reduce to other mathematical quantities/results? Are there any general readings useful to approach these kinds of problems ?

Cross posted at https://math.stackexchange.com/questions/4197183/representing-flux-tubes-as-a-pair-of-level-surfaces-in-r3

asked Jul 13, 2021 in Theoretical Physics by Prathyush (705 points) [ revision history ]
edited Jul 13, 2021 by Prathyush

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar\varnothing$sicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...