I define the fractional q-derivation:
$$D_q^{\alpha}(f)(x)=[(f(qx)-f(x))/((q-1)x)]^{\alpha}=$$
$$=\frac{1}{((1-q)x)^{\alpha}}\sum_{n=0}^{\infty} (-1)^n [(1-q^{C_n^{\alpha}})/(1-q)]f(q^n x)q^{-n}$$
We have:
$$D_q^{\alpha} \circ D_q^{\beta} =D_q^{\alpha+\beta}$$
$$D_q^{\alpha} T=q^{\alpha} T D_q^{\alpha}$$
with $T(f)(x)=f(qx)$.
Have we algebraic properties of the fractional q-derivations?