Let (M,ω) be a symplectic manifold. The symplectic Clifford algebra is:
ef−fe=ω(e,f)
I define the symplectic Dirac operator over the symplectic spinors:
D=∑i,jω(ei,ej)ei.∇ej
with (ei) an orthonormal basis. We have:
D(fψ)=(df)ω∗.ψ+fD(ψ)
Have we:
D2=Δ+α
with α a scalar?