Let $(M,g)$ be a riemannian manifold. I define an element in the Clifford algebra:
$$\tilde R (X)= \sum_{i,j} e_i .e_j . R(X,e_i)e_j$$
where $R\in \Lambda^2(TM) \otimes End(TM)$ is the Riemannian curvature. The Clifford-Einstein equations are:
$$\tilde R (X)=\lambda X$$
Can we solve the Clifford-Einstein equations for black holes?