The Minkowski metric transforms under Lorentz transformations as
\begin{align*}\eta_{\rho\sigma} = \eta_{\mu\nu}\Lambda^\mu_{\ \ \ \rho} \Lambda^\nu_{\ \ \ \sigma} \end{align*}
I want to show that under a infinitesimal transformation $\Lambda^\mu_{\ \ \ \nu}=\delta^\mu_{\ \ \ \nu} + \omega^\mu_{{\ \ \ \nu}}$, that $\omega_{\mu\nu} = -\omega_{\nu\mu}$.
I tried expanding myself: \begin{align*} \eta_{\rho\sigma} &= \eta_{\mu\nu}\left(\delta^\mu_{\ \ \ \rho} + \omega^\mu_{{\ \ \ \rho}}\right)\left(\delta^\nu_{\ \ \ \sigma} + \omega^\nu_{{\ \ \ \sigma}}\right) \\ &= (\delta_{\nu\rho}+\omega_{\nu\rho})\left(\delta^\nu_{\ \ \ \sigma} + \omega^\nu_{{\ \ \ \sigma}}\right) \\ &= \delta_{\rho\sigma}+\omega^\rho_{\ \ \ \sigma}+\omega_{\sigma\rho}+\omega_{\nu\rho} \omega^\nu_{{\ \ \ \sigma}} \end{align*}
Been a long time since I've dealt with tensors so I don't know how to proceed.
This post imported from StackExchange Physics at 2014-03-05 14:49 (UCT), posted by SE-user user82235