Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,353 answers , 22,789 comments
1,470 users with positive rep
820 active unimported users
More ...

  Anomalous dimensions in the $O(N)$ model

+ 2 like - 0 dislike
3138 views
  • Is there any statement known about the anomalous dimensions of the $O(N)$ model in various dimensions and/or in the large-N limit?

  • If a $\phi^4$ ("double-trace") term is coupled to an $O(N)$ model then is there an argument as to why this quartic term is ignorable?

[..I believe that there are analogous statements known for higher bosonic spin fields too - at least for the second question of mine..]

I would be happy to see some pedagogic references which hopefully derive these.

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user user6818
asked Oct 18, 2013 in Theoretical Physics by user6818 (960 points) [ no revision ]
Most voted comments show all comments
@Adam I guess Peskin-Schroeder gives the results for $3+1$. Can you kindly give a reference to all the many results that you quoted in your first comment?

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user user6818
@user6818: sure. For $d=3$, you can have a look at arXiv:1110.2665, table 1, where they quote quite a lot of different results. For dimension $4-\epsilon$, Zinn-Justin's book on critical phenomena gives $\eta$ up to three loops, chapter 28, equation 28.7. In $d=2+\bar \epsilon$, same book, equation 30.49. In large N, same book, equation 29.51.

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user Adam
@Adam I couldn't locate much of anything in the arxv link of yours. It seems to be some simulation data and not any analytic result. By $\eta$ you mean the anomalous dimensions of $\phi$ and not $\phi^2$..right? I guess $\phi^2$ has an anomalous dimension ?( at least in large N at $d=3+1$?...though I am more interested in $d=2+1$...)[...I have been trying to learn the derivations from the Zinn-Justin-Moshe review...]

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user user6818
@user6818: Well, in d=3 (=2+1 in euclidean time), there is not much analytical results (only $\epsilon=1$, which need to be resummed numerically anyway). In the O(N) model, $\eta$ usually refers to the behavior of $\langle \phi(x)\phi(0)\rangle$, which in fourier behaves like $1/p^{2-\eta}$. Of course, every operator has a scaling dimension, but the anomalous dimension is usually this one. For analytical results, have a look at Zinn-Justin's book, at the equation I referred to.

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user Adam
@Adam Thanks for your reply. So what is the statement about the anomalous dimension of $\phi^2$?

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user user6818
Most recent comments show all comments
That's why I said "very basic things can be found in Peskin..." and gave other references. You can also look in arxiv.org/abs/hep-th/0306133 which is a summary

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user John
@John Yeah..I have been planning to take a look at that review on my own anyway. Is there anyway you can see how PS's 13.47 and 13.50 can be used to get the results that Adam is quoting?..at least for the case of d=3+1...and any insights about the second bullet point?...

This post imported from StackExchange Physics at 2014-03-07 13:38 (UCT), posted by SE-user user6818

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
$\varnothing\hbar$ysicsOverflow
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...