Quantcast
  • Register
PhysicsOverflow is a next-generation academic platform for physicists and astronomers, including a community peer review system and a postgraduate-level discussion forum analogous to MathOverflow.

Welcome to PhysicsOverflow! PhysicsOverflow is an open platform for community peer review and graduate-level Physics discussion.

Please help promote PhysicsOverflow ads elsewhere if you like it.

News

PO is now at the Physics Department of Bielefeld University!

New printer friendly PO pages!

Migration to Bielefeld University was successful!

Please vote for this year's PhysicsOverflow ads!

Please do help out in categorising submissions. Submit a paper to PhysicsOverflow!

... see more

Tools for paper authors

Submit paper
Claim Paper Authorship

Tools for SE users

Search User
Reclaim SE Account
Request Account Merger
Nativise imported posts
Claim post (deleted users)
Import SE post

Users whose questions have been imported from Physics Stack Exchange, Theoretical Physics Stack Exchange, or any other Stack Exchange site are kindly requested to reclaim their account and not to register as a new user.

Public \(\beta\) tools

Report a bug with a feature
Request a new functionality
404 page design
Send feedback

Attributions

(propose a free ad)

Site Statistics

205 submissions , 163 unreviewed
5,082 questions , 2,232 unanswered
5,355 answers , 22,793 comments
1,470 users with positive rep
820 active unimported users
More ...

  Free energy of the critical U(N) model

+ 3 like - 0 dislike
694 views
  • Can someone help explain how the equations 30, 31 and 34 were obtained in this paper.

    At a conceptual level I am wondering looking at equation 34 as to if they mean that $\lambda$ is somehow the anomalous dimension of the single-trace operators in this critical U(N) model - although looking at equation 30 it seemed that $\lambda$ is just the Hubbard-Stratonivich auxiliary field (though its not clear to me as to how is equation 30 derived). That factor of $(l + \frac{1}{2})$ is confusing me everywhere.

    Also what they call as $1/g$ in equation 30 is what I would think of as the threshold value of the translationaly invariant condensate at which the symmetry breaks. So it is like an order parameter and I can't see that as something that was there in the UV lagrangian as a coupling constant as they seem to imagine it here.

  • Although I understand how equation 1 in this paper was derived but I still don;t see how equation 35 somehow follows immediately from it.

This post imported from StackExchange Physics at 2014-03-07 13:45 (UCT), posted by SE-user user6818
asked Nov 13, 2013 in Theoretical Physics by user6818 (960 points) [ no revision ]

Your answer

Please use answers only to (at least partly) answer questions. To comment, discuss, or ask for clarification, leave a comment instead.
To mask links under text, please type your text, highlight it, and click the "link" button. You can then enter your link URL.
Please consult the FAQ for as to how to format your post.
This is the answer box; if you want to write a comment instead, please use the 'add comment' button.
Live preview (may slow down editor)   Preview
Your name to display (optional):
Privacy: Your email address will only be used for sending these notifications.
Anti-spam verification:
If you are a human please identify the position of the character covered by the symbol $\varnothing$ in the following word:
p$\hbar$ysicsOver$\varnothing$low
Then drag the red bullet below over the corresponding character of our banner. When you drop it there, the bullet changes to green (on slow internet connections after a few seconds).
Please complete the anti-spam verification




user contributions licensed under cc by-sa 3.0 with attribution required

Your rights
...