The group of isometries of a given connected smooth (semi) Riemannian manifold is always a Lie group. However, a Lie group can include subgroups of discrete isometries that, barring the identity, cannot be represented by continuous isometries and thus they have no Killing vectors associated with them. (Actually, only some elements of the connected component including the identity can be associated to Killing fields.)
For instance, referring to $\mathbb R^3$ equipped with the standard metric, the Lie group of isometries is the semidirect product of space translations $\mathbb R^3$ and rotations $O(3)$ around a fixed point. The second mentioned subgroup of isometries, $O(3)$, admits a discrete subgroup: $\{I, -I\}$. The spatial inversion $-I$ cannot be associated with any Killing field. Similarly all the symmetries in $-I(SO(3))$ cannot be associated with Killing fields.
This post imported from StackExchange Physics at 2014-04-11 15:21 (UCT), posted by SE-user V. Moretti